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Abstract

Bidentate P,P- and N,P-ligands derived from inexpensive and commercially available chiral $Bjek Z-diaminocyclohexane, have
been tested in the asymmetric Rh-catalyzed addition of diphenylsilane to acetophenone. Studies on the reactivity of these ligands towards
the rhodium precursor [Rh(cod)Gl{cod = cycloocta-1,5-diene) have shown that either monomeric, or dinuclear complexes, or both can be
found in the solution. The structure of the cationic complex [Rh(&a&))PFs (12), has been elucidated by X-ray analysis. The presence in
the reaction mixture of different rhodium complexes which act as precatalysts, influences the activity and stereoselectivity of the process.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction 1,2-diaminocyclohexane. They have been used in the Cu-
catalyzed asymmetric conjugate addition of diethylzinc to
The hydrosilylation of prochiral ketones catalyzed by 2-cyclohexenon@].
enantioselective transition metal complexes has become ar

) X . . H O H
attractive method for the synthesis of optically active sec- N—P<o> N—PPh, V-
ondary alcohol§l]. In particular, rhodium(l) complexes that O/ y O’ O/
contain chiral ligands act as highly active catalysts for a H*P\:) “N—PPh, “N—R
wide variety of aryl alkyl and dialkyl ketong®]. A large 1 2 '
. . . a-1c P.
number of homo- or mixed bidentate donor ligands have tBu O DO tBu
been screened in Rh-catalyzed addition of silanes to ke-
tones. Many of them yielded promising results in terms of " Q O
. . . . . -DBu
asymmetrlt_: induction and patalytlp activity]. We hc_':lv_e re- ’ O OO HyCO OCH,
cently published a new series of bisphosphoroamittite c o o— o— 3a.3b
and amino-phosphoroamidi8a—3b ligands. They were de- (O = o— OO o—
. . . : 3aR=CH
rived from the economical, commercial chiral sourgR)- Hico O o 3b R = GHICH,
1b S,
1a 1cR,
* Corresponding author. Tel.: +39 906765722; fax: +39 90393756. In order to evaluate whether this new series of P,P- and
E-mail addressc.arena@chem.unime.it (C.G. Arena). N,P-chiral ligands could be used in other transition-metal
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catalyzed enantioselective transformations, we decided2.3. [Rh(cod)8a)]PFs (12)

to employ the bisphosphororamidite ligarich and the
amino-phosphoroamidite ligan8a in the Rh-catalyzed
hydrosilylation. Moreover, we wondered if the stereos-
electivity of the process would be different using the
(RR)-1,2-bis(diphenylphosphinamino)cyclohexane 2). (

Ligand3a (106 mg, 0.2 mmol) was added to a stirred so-
lution of [Rh(cod)CI} (49 mg, 0.1 mmol) in toluene (5 mL).
The yellow solution was stirred for 30 min, and WPFs
(42.4mg, 0.26 mmol) was added. After stirring overnight,

The phenyl groups on the phosphorus atom take a helicalthe inorganic salts were filtered and the filtrate was re-

conformation in this ligand when it is chelated to a rhodium
center[5]. We also decided to investigate the reactivity of
these ligands towards the rhodium precursor [Rh(cod)ClI]
(cod = cycloocta-1,5-diene).

2. Experimental

All syntheses were performed under purified nitrogen us-

duced (2 mL). Addition of hexane (10 mL) precipitated com-
plex 12 as yellow solid (88%, 156 mg). Anal. Calc. for
CsgHs7FsN2O4P2Rh: C, 51.59; H, 6.49; N, 3.17. Found: C,
51.48; H, 6.54; N, 3.01XH NMR (CgDe): & = 1.25 (m, 2H,
CHy); 1.39 (s, 9H, C(CH)3), 1.55 (m, 6H, CH); 1.67 (s, 9H,
C(CHg)3), 1.80 (m, 4H, CH), 2.13 [d,3Jpn = 7.0Hz, 3H,
CHg], 2.36 (m, 6H, CH, CH), 2.74 (s br, 3H, CH)), 3.49 (s
br, 1H, NH), 3.79 (s, 3H, OC}J, 3.8 (s, 3H, OCH), 4.09 (s
br, 1H,=CH), 4.62 (s br, 1H=CH), 5.32 (s br, 1H=CH),

ing standard Schlenk techniques. Solvents were dried by stan5.62 (s br, 1H=CH), 6.52 [d,*Jq 1 = 3.0 Hz, 1H, CH], 6.70
dard procedures. Unless otherwise indicated, all materials[d, 4JH,H = 3.0Hz, 1H, CH], 6.95 [df‘JH,H = 3.0Hz, 1H,
were commercially available and were used without further CH], 7.00 [d,*Jn.4 = 3.0 Hz, 1H, CH]3'P NMR (GsDe): 6

purification. NMR experiments were carried out using the =129.2 [d,'Jp rn = 251 Hz],—141.1 [sept!Jp F = 712 Hz,

Bruker AMX R300 spectrometefH NMR spectra were ref-
erenced to internal tetramethylsilane &4B{*H} spectra to
external 85% HPO, (§ = 0 ppm). Elemental analyses were

PFs™]).

2.4. General procedure for asymmetric hydrosilylation

performed by Redox s.n.c., Cologno Monzese, Milano. Gas of acetophenone
chromatographic analyses were run on a Fisons GC 8000

Mega series instrument equipped with a J&ADex capil-
lary column (30 mx 0.32mm i.d., 0.2%m film).

2.1. [RhCI@a)]2 (4)

Ligand1a (177 mg, 0.2 mmol) was added to a stirred so-
lution of [Rh(cod)CI} (49 mg, 0.1 mmol) in toluene (2 mL).
After 20 min, the complexX was obtained, as yellow—orange
solid, by precipitation with hexane (10mL). Yield (85%,
192 mg). Anal. Calc. for ggHgsCIN2OgP2Rh: C, 58.57; H,
6.68; Cl, 3.46; N, 2.73. Found: C, 58.81; H, 6.75; Cl, 3.41;
N, 2.46.'"H NMR (CgDe): § = 0.92 (m, 2H, CH); 1.25 (m,
4H, CHp), 1.7 (m, 2H, CH) 1.88 (s, 18H, C(CH)3), 2.30 (s,
18H, C(CHp)3), 2.53 (s, 2H, NH), 2.88 (s br, 2H, CH), 3.18
(s, 3H, OCH), 3.41 (s, 3H, OCH), 6.37 [d,*J4 1 = 3.0Hz,
2H, CH], 6.78 [d,*J4 1 = 3.0Hz, 2H, CH], 7.13 [0}y 1 =
3.0Hz, 4H, CH].31P NMR (GsDg): 6 = 145.7 [d, Jprp =
292 Hz].

2.2. [Rh(cod)2)]BF 4 (9)

Ligand 2 (48.2mg, 0.1mmol) was added to a
stirred solution of [Rh(cod)BF4 (40.5mg, 0.1 mmol) in
dichloromethane (2 mL). After 10 min, the compouhaias
obtained by precipitation with hexane. Yield (83%, 74 mg).
Anal. Calc. for GgH44BF4N2P2Rh: C, 58.48; H, 5.68; N,
3.59. Found: C, 58.25; H, 5.77; N, 3.5H NMR (CDCl):
8=0.81 (m, 2H, CH); 1.25-2.38 (m, 14H, Cp), 1.71 (m,
2H, CHp); 2.5 (s br, 2H, NH), 3.29 (s br, 2H, CH), 4.24 (m br,
2H,=CH), 4.85 (m br, 2H=CH), 6.90-7.80 (m, 20H, CH).
3P NMR (CDCB): 6 = 66.0 [d,*Jp rn = 161 Hz].

The ligand (0.01 mmol) was added to a solution of
[Rh(cod)CI} (0.005 mmol) in toluene (2 mL). After 20 min,
acetophenone (1 mmol) and#8iH; (1.1 mmol) were added.
The mixture obtained, was then stirred at room temperature
for 20 h. The solution was quenched with MeOH (7 mL) and
2.5 M aqueous NaOH (5 mL). The conversions (conv.) and ee
values were determined using GC with a J@Adex column
[3a].

2.5. X-ray data collection, structure solution and
refinement for complek2

When a CHQ solution of complext2 underwent slow
evaporation, suitable crystals for the X-ray analysis were ob-
tained. The intensity data were collected at room temperature
on an AXS Smart 1000 single crystal diffractometer (using a
graphite monochromated ModKradiation,A = 0.71073&).
Crystallographic and experimental details for the structures
are summarized ifable 1 The raw frame data was processed
using SAINT and SADABS to yield the reflection data file.
The Bruker software was used for the absorption correction
[6] (maximum and minimum effective transmission value
1.000 and 0.8477). The structure was solved by direct and
Fourier methods and refined by full-matrix least-square pro-
cedures (based oF@) (SHELX-97)[7], first with isotropic
thermal parameters, and then with anisotropic thermal param-
eters in the last cycles of refinement for all the non-hydrogen.
The hydrogen atoms were introduced into the geometrically
calculated positions and refineiling on the correspond-
ing parent atoms, apart from the hydrogen atom bound to
N(1), which was identified and isotropically refined. CCDC
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Table 1

Crystal data and structure refinement for comglgx

Formula

Fw

Crystal system
Space group

a(d)

b (A)

c(A)

v (A3)

Z

Dealed (g CN13)
F(O00)

Crystal size

w (em™)

Reflections collected
Reflections unique
Observed reflections p 20(1)]
Parameters
Rindices | > 20(1)]
Rindices (all data)

monomeric comple® supporting the assignment of a sym-
metrical chloro bridged dinuclear structure for complex

R1= Y IFol — IFcll/> IFol, wRe= | S [w(F2

reference number 234032 contains the supplementary crys-
tallographic data for this paper. This data can be obtained free

of charge vianttp://www.ccdc.cam.ac.uk/dataquest/cifby
emailingdatarequest@ccdc.cam.ac.akby contacting The

Cambridge Crystallographic Data Centre, 12, Union Road,

Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

3. Results and discussion
3.1. Coordination studies

Generally, the Rh-catalyst for the enantioselective hy-
drosilylation of ketones is prepared in situ using L* (chiral
bidentate ligand) and [Rh(cod)GI[2]. However, little infor-
mation regarding Rh(I)-complexes, which form in solution

GsHs7FsN204P;Rh The two non-equivalent phosphorus atoms of the compound
8?34;? - 5 display two doublets of doublets at= 142.0 Jprn =
otorer 235 Hz;2Jp rhp = 67 Hz) and ab = 151.8 {£Jp rp = 258 Hz;
10.557(5) 2Jp.Rnp = 67 Hz) in the®'P{'H} spectrum (€Ds). Com-
17.406(5) pound4, as a yellow—orange air stable powder, was also iso-
22.125(5) lated.
4066(2) HsCO. OCH
4 3 Bu Bu ’
1.445 O O
1840
0.1% 0.15x 0.23
0.567 —NH HN— P\
23814 HsCO OCHj
905} = 0.033)
5214
487
Ry = 0.0498 WR, = 0.0804
Ry = 0.1148WR, = 0.0944 Bu tBu
I JRET H5CO OCHs
= F21/ > w(F3)] P—NH HN p
HsCO ! OCH3
HsCO OCH
3 O Bu Q tBu O °
—NH HN— P\
H3CO \ / OCH;

e

5

Reaction of2 [10] with [Rh(cod)CIp in toluene, in a

and act as precatalyst, is available. It is well known that the 2:1 molar ratio, afforded three products. TH®{'H} spec-

reaction of [Rh(cod)CHwith bidentate ligands can give both

trum (GsDg) of the mixture featured three doubletssat

chelating monomeric or bridged dinuclear complexes. This 58.3 ¢Jprn = 157 Hz); 63.9 ¥Jprn = 159 Hz) and 83.7
depends on the metal-ligand ratio, steric and electronic fac-(*Jp.rn = 213 Hz) whose peak areas were in the 1:0.5:0.25

tors of the ligand and on the nature of solvgit

Hence our interest in studying the chemical behavior of
ligands1la—3a towards the dimeric complex [Rh(cod)&l]
We expected a different reactivity among ligai@s3a ow-
ing to the different electronic nature of donor atoms.

The reaction of bisphosphoroamidita in toluene, with
[Rh(cod)CIp in a 2:1 molar ratio afforded, almost exclu-
sively, the binuclear Cl-bridged complex [RhC#)]> (4).
The3P{1H} spectrum (GDg) of the crude solution shows a
doublet centered dt= 145.7 GJP,Rh =292 Hz). Thisisdueto

ratio, respectively. Due to probable oxidation products of
ligand 2, additional signals were observed in the raidge
20-24.5. The doublet dt= 83.7 was assigned to the chloro-
bridged complex [RhCR)]2 (6), being that the addition of
pyridine had led to the formation of the monomeric com-
plex [Rh(GHsN)CI(2)] (7) [6 = 75.0 (dd, Jp rn = 88 Hz;
2JpRrhP = 56 Hz); 8 = 86.5 {Jprn = 104 Hz;2Jprpp =
56 HZz)].

In a separate experiment, the addition of NaB& the
crude solution allowed us to assign the doublet at63.9

the equivalent phosphorus atoms of the bisphosphoroamiditeto the cationic compound [Rh(co@){CI (8). The sodium
being chelated to the rhodium center. Very low intensity res- salt addition led to the exchange of Clor BF4~ giving the
onances were also present, but could not be identified. Thecomplex [Rh(cod)}?)]BF4 (9) with a doublet af = 66 Jp.rn

addition of pyridine to the reaction mixtuf8] formed the

= 161 Hz) in the3'P{*H} spectrum (CDG), as confirmed
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by the analysis of a pure sample®{seeSection 2. Table2
Finally, we identified the component &i= 58.3, as the ~ Selected distances and angles for complex
binuclear compleX[Rh(cod)CIk(2)} (10) in which the two Bond lengths

metal atoms are bridged by only one ligand. Rhi-P1 2237(2) P+-O1 1616(3)
Rhi-N1 2178(5) P+O2 1638(3)
Rhi-M1 2.1778(6) PEN2 1635(4)
Rhi-M2 2.0404(5) N1-C9 1510(8)
Rhi—C1 2146(5) N+C15 1469(7)
F|>—NH HN— Rhi-C2 2154(6) N2-C14 1491(6)
Rh R Rh1—C5 2274(7) N2-C16 1462(6)
\—J/\\CI CI</-/ Rh1-C6 2281(6)
Bond angles
10 P1-Rh1-M1 177.95(4) OFPI-N2 9978(2)
P1-Rh1:-M2 96.15(4) 02-P1-N2 11119(2)
In agreement with this assignment, the reactiog wfith N1—Rh1—M1 9101(1) RhEN1—C9 11751(3)
[Rh(cod)Clp, in an equimolar ratio, gave a mixture of com- ~ N1—Rh1-M2 17510(1) Rh1-N1—C15 11190(3)
plexes8 and10in the 0.2:1 ratio. Moreover, in thed NMR PI-Rh1-N1 87.24(1) C9-N1-C15 11184(4)
Rhi-P1+01 11948(1) PEN2—C14 11643(3)

spectrum the olefin proton resonances of compotfdgere Rh_PL_02 11345(1) PLN?_O16 12515(3)
observed a$ = 4.30, 4.92, 5.80 and 5.88. Unfortunately, all Rh1—P1-N2 10950(1) C14-N2—C16 11841(2)
attempts to obtaiftOas a pure compound were unsuccessful.  o1—p1-02 10252(2)

Differently from ligands 1la-2, the reaction between
the amino-phosphoroamidite ligar#h and [Rh(cod)CH
caused exclusively the splitting of the chloro bridge and ligand are not coplanar (the dihedral angle between them is
the formation of the [Rh(cod3@)ICl (11). The exchange  50.8(1)), and the C19, C22, C29 and C32 atoms are not
of CI~ for PRs™ allowed us to obtain the cationic complex collinear (the C10-C22..C32 angle involving non-bonded
[Rh(cod)Ba)]PFs (12), which displayed a doublet at = atoms is 168.42)), probably due to the steric hindrance of
129.2 £Jp rn = 251 Hz) in the3P{*H} spectrum (GDe). thetert-butyl groups. The absolute configuration at C9, C14
Slow evaporation of a CH@lsolution of12 yielded yellow and N1 isRRR.
crystals suitable for X-ray analysis.

A view of the structure of the cation df2is shown in 32 Rh-catalyzed hydrosilylation of acetophenone
Fig. 1, together with the atom numbering system; selected
bond distances and angles are giveriTable 2 The Rh The P,Pia-2 and N,P3a ligands were screened in the
atom displays a slightly distorted square planar coordination, gsymmetric Rh-catalyzed addition of #iH, to acetophe-
which involves both the P1 and N1 atoms from the Chelat|ng none Gcheme )_ The resu'ts are SummanzedTﬁb'e 3
ligand3a(Rh1-P1and RhiN1 are 2.236(1) and 2.176(8) Using preformed dimeric rhodium complex [RhCij],
reSpeCtlve|y) and the M1 and M2 mldeIntS Ofthe two double (4) the conversion reached 99% ar@-n__pheny|ethan0|
bonds of the cod ligand (ReM1 and Rh-M2 are 2.1778(6)  was obtained in 16% ee value (entry 1). The catalytic sys-
and 2.0404(5A, respectively). The two phenyl rings of the  tem [Rh(cod)Clj/1a gave the same enantiomeric excess
value with a slight decrease in the conversion (entry 2).
Probably, the presence of by-products in the reaction mix-
ture, as the3'P{*H} NMR spectral monitoring revealed
(see coordination studies), reduces the activity of the cata-
lyst. [Rh(cod}]BF4/1asystem afforded poorer results (58%
conv., 8% ee, entry 3).

Although the catalytic precursor containing ligaghdave
a higher ee value (25% entry 5 versus 16% entry 1) than
[Rh(cod)Clp/1asystem and an inversion in the absolute con-
figuration of the 1-phenylethandR{ersusS), the conversion
was rather low (48%). Vigorous hydrogen evolution was ob-
served during the addition of diphenylsilane and consider-

0]

1)Rh/L*
PhSiHp *"OH
4>

2) MeOH/NAOH

Fig. 1. Ortep view of compound?2 with thermal ellipsoids drawn at the
30% probability level. Scheme 1.
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Table 3

Asymmetric hydrosilylation of acetophenone

Entry L Rh-complex Solvent T(°C) Conv. (%} ee (%}
1 la [Rh(CH(D)]2 Toluene 25 99 169
2 la [Rh(cod)ClIp Toluene 25 94 169
3 la [Rh(cod}]BF4 Toluene 25 58 89
4 la [Rh(CI)(1)]2 Toluene 0 30 89
5 2 [Rh(cod)Clp Toluene 25 48 25R)
6 2 [Rh(cod)ClIp Toluene 0 18 5R)
7 2 [Rh(cod}]BF4 CHxCl; 25 30 15R)
8 3a [Rh(cod)ClIp Toluene 25 40 0
9 3a [Rh(cod}]BF4 CHxCl; 25 50 0
10 3a [Rh(cod}]BF4 THF 25 73 0

Reaction conditions: acetophenone (1 mmol$H, (1 mmol), L/Rh = 1, [cat] = 1 mol%t = 20 h.
a Percentage conversions and enantiomeric excesses determined ByO&& ¢olumn).

able amounts of silylenol ether FHSIOC(PhCH, were 4. Conclusions

detected in théH NMR spectrum. This indicates that sily-

lation of the enol of acetophenone becomes a prominent We tested P,Ra&2, and N,P3a ligands derived

drawback when employing [Rh(cod)@f2 as precatalyst from the economical, commercial chiral sourdgR)-1,2-

[1]. diaminocyclohexane, in the asymmetric Rh-catalyzed addi-
When the temperature is lowered, hydrogen evolution is tion of diphenylsilane to acetophenone. Studies of the re-

reduced, however a decrease in the reaction rate and enamactions ofla-3a with [Rh(cod)Cl} displayed that either

tioselectivity was also observed (entry 6). monomeric or dinuclear complexes, or both can be found
The catalytic system [Rh(cog]BF4/2, was tested in in the solution.

CHCl;, owing to its low solubility in toluene. The cationic The [Rh(cod)Cl}/1asystem and the [RhClf]» complex

[Rh(cod)@)]BF4 species formed in solution (as evidenced showed good catalytic activity (from 94 to 99%) however low

by the presence of a doublet in th{*H} NMR spectrum) enantiomeric excess value was obtained (16%). The lower

displayed a lower performance being that the conv. and eecatalytic activity of the [Rh(cod)C}f1a system is probably

values were respectively, 30% and 15% (entry 7). due to the presence of unidentified Rh-ligand species in so-
As observed with ligandla, the rhodium cationic complex lution.
[Rh(cod}]BF,is also less efficient with the P&ligand. The With the catalytic system [Rh(cod)GIR an improve-

chloride ligand is apparently required for a better activity in ment in the asymmetric induction was observed (25% ver-
active species. Unfortunately, investigations carried out on sus 16%) together with an inversion in the absolute config-
both the actual reaction mixture and the mixture after catalytic uration of the 1-phenylethandR(versusS), but the conver-
reaction, did not provide useful information about the species sion was only 48%. The low activity is due to the forma-
present in the solution. tion of the by-product silylenol ether PBIOC(Ph¥CHoa.

Although many Rh-catalyzed hydrosilylations give a bet- The activity and the stereoselectivity of the process is prob-
ter performance at lower temperatures, the yield and theably unfavorably influenced by the presence in the solu-
ee value of 1-phenylethanol dropped dramatically when the tion of three different rhodium complexes acting as precata-
Rh/L (L = 1-2) systems were tested atQ [11]. lysts.

The [Rh(cod)Cl}/3a system showed moderate catalytic Although many chiral nitrogen—phosphorus ligands/Rh
activity in the hydrosilylation of acetophenone, but was not systems have provide secondary alcohols with good-to-
stereoselective (entry 8). In this case no hydrogen evolution excellent selectivity2,3a,3d]the [Rh(cod)Cl}/3a system,

was observed, and no silylenol was detected in'thé&IMR in which only the cationic precatalystl forms in so-
spectrum. The reaction between [Rh(cod)@hd the N,P3 lution, was not stereoselective. Unfortunately, the mecha-
ligand afforded the cationic complex [Rh(co8d{]CI (11), nism and the configuration-determining step for the Rh-
as its only product (see above). Thus, we expected similarcatalyzed asymmetric hydrosilylation are not yet well de-
results when using the catalytic system [Rh(edBlF4/3a. fined[12]. This precludes any rational interpretation of this
Experiments were conducted in @El; or THF, ow- result.

ing to the poor solubility of the complex in toluene. As

was expected, no asymmetric induction was obtained and

the catalytic activity was depended on the solvent em-

ployed (entry 9 versus 10). When the temperature was Acknowledgement

lowered to OC, no influence on enantioselectivity was

noticed. We thank MIUR for financial support.
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